
strongSwan

 The new IKEv2 VPN Solution

Andreas Steffen
andreas.steffen@strongswan.org

Copyright © 2007 by Andreas Steffen
Institute for Internet Technologies and Applications

Hochschule für Technik Rapperswil, Switzerland

strongSwan is a complete IPsec-based VPN solution supporting both the
traditional IKEv1 as well as the new IKEv2 key exchange protocols. Using
practical examples we will present the novel features made possible by
IKEv2, among them mixed-mode authentication with the VPN gateway pre-
senting an X.509 certificate and the clients using either pre-shared secrets
or one of the various EAP authentication methods (e.g. the SIM-card based
EAP-SIM or EAP-AKA methods popular in mobile environments). Other
goodies include fast VPN connection setup, built-in NAT traversal and dead
peer detection, automatic subnet narrowing, as well as the convenient
new IKE configuration payload that can be used to transfer a whole set of
network attributes like virtual IP addresses and internal DNS information).
We will also give an outlook on our forthcoming "Peer-to-Peer NAT-
Traversal for IPsec" Internet draft which proposes an innovative IKEv2
protocol extension to establish IPsec tunnels in double-NAT situations by
using UDP end point discovery and hole punching through Network
Address Translators assisted by an IKEv2 mediation server.

VPNs revisited

IIllustration 1 shows the two most common uses for a Virtual Private Network.
Often a VPN connects two geographically separated sites over the public
Internet by means of a cryptographically secured communications link. In our
example the hosts 10.1.0.5 and 10.2.0.3 in the two subnets 10.1.0.0/16 and
10.2.0.0/16, respectively, are not aware that their respective VPN gateways
with external IP addresses 11.22.33.44 and 55.66.77.88 tunnel all traffic
between the subnets by encrypting them according to the IPsec Encapsulated
Security Payload (ESP) RFC 4303 standard. We call this application a site-to-
site tunnel. The second, more challenging use is a remote access tunnel, where
so-called road warriors with dynamical and therefore a priori unknown IP
addresses connect to a security gateway in order to access the protected
subnet behind it. We will treat this interesting case in more detail later on.

Reprint of LinuxTag2007 Paper 1

The FreeS/WAN Genealogy

strongSwan is a straight successor of the famous FreeS/WAN project started by
John Gilmore in 1999 with the goal of automatically securing a large share of
the Internet traffic. His Opportunistic Encryption scheme intended to use raw
RSA authentication keys stored in the global Domain Name System (DNS).

Unfortunately the restriction to raw RSA keys did not allow FreeS/WAN to inter-
operate with a multitude of VPN clients and gateways that were using X.509
certificates. Therefore in the year 2000 the author started to contribute the
X.509 Patch which added full X.509 certificate and PKCS#11 smart card
support to the FreeS/WAN source code. Due to political reasons the X.509
patch never got officially merged into FreeS/WAN but around 2002 Ken Bantoft
integrated several add-on patches (X.509, NAT-Traversal, Dead Peer Detection,
alternative encryption algorithms, etc.) with FreeS/WAN and put this
augmented distribution on the Internet. His Super FreeS/WAN quickly became
very popular and found its way into a couple of Open Source firewall projects,
among them IPCop. Ken Bantoft maintained Super FreeS/WAN until recently
under the name of Openswan 1.x.

Whereas the original FreeS/WAN 1.x ran on Linux 2.0, 2.2, and 2.4 kernels
using its own KLIPS IPsec kernel module, the FreeS/WAN 2.x branch was also
able to run on the new Linux 2.6 kernel thanks to Herbert Xu who contributed
an XFRM interface which made interaction with the Linux 2.6 kernel's native
NETKEY IPsec stack possible. Without the need for KLIPS, FreeS/WAN 2.x could
now be built as a pure userland application thus eliminating the tiresome step
of recompiling the Linux kernel sources.

In 2004 John Gilmore decided to discontinue the FreeS/WAN project, mainly
because he held the view that the main goal of implementing Opportunistic
Encryption had been achieved with the final FreeS/WAN 2.0.6 release and thus
there was just nothing else to do.

Reprint of LinuxTag2007 Paper 2

Illustration 1: Site-to-Site and Remote Access Virtual Private Networks

Internet

Head
Quarters Subsidiary

„Road Warrior“

VPN Tunnel

VPN Tunnel

VPN Gateway
11.22.33.44

VPN Gateway
55.66.77.88

VPN Client

10.1.0.0/16 10.2.0.0/16

10.3.0.2
10.1.0.5 10.2.0.3

55.66.x.x

Right after the demise of FreeS/WAN, ex-project leader Michael Richardson
teamed up with Ken Bantoft and Paul Wouters to found Xelerance Inc. with the
main goal of pursuing the Openswan project. Due to various reasons the author
decided to fork off a strongSwan distribution of his own. Thus Openswan 2.x
swerving towards the VPN mainstream e.g. by supporting the potentially
insecure IKE aggressive mode and strongSwan 2.x with its focus on strong
authentication became the official successors of the FreeS/WAN project (see
the family tree in Illustration 2).

In 2005, some six months before the official publication of the IKEv2 RFC 4306,
the two HSR students Jan Hutter and Martin Willi approached me with the
proposal to design an IKEv2 software architecture based on modern, object-
oriented principles and to implement a rapid prototype in the C programming
language as part of their diploma thesis at the Institute for Internet
Technologies and Applications (ITA). After the successful completion of their
prize-winning thesis, Martin Willi decided to stay on at the Institute in order to
develop a full-fledged IKEv2 implementation which I now have the honor to
present in this paper.

Because we wanted to maintain a maximum compatibility with the existing
IKEv1 strongswan-2.x implementation, the well-established ipsec.conf and
ipsec.secrets configuration syntax was kept, with just the exception of some
new IKEv2-specific keywords. By bundling the IKEv1 keying daemon pluto from
the strongswan-2.x branch (having its origins in the FreeS/WAN project) with
the modern multi-threaded, object-oriented IKEv2 keying daemon charon, we
created the strongswan-4.x branch which currently is the only Open Source
IPsec implementation offering both IKEv1 and IKEv2 capabilities.

To complete our overview, Openswan-3.x is focusing on a KLIPS IPsec stack for
the Linux 2.6 kernel with built-in support of hardware crypto accelerators.

Reprint of LinuxTag2007 Paper 3

Illustration 2: The FreeS/WAN genealogy

Super FreeS/WANSuper FreeS/WAN

2003
Super FreeS/WANSuper FreeS/WAN

2003 X.509 2.x PatchX.509 2.x Patch

FreeS/WAN 2.xFreeS/WAN 2.x

X.509 2.x PatchX.509 2.x Patch

FreeS/WAN 2.xFreeS/WAN 2.x

1999 FreeS/WAN 1.xFreeS/WAN 1.x1999 FreeS/WAN 1.xFreeS/WAN 1.x

X.509 1.x PatchX.509 1.x Patch2000 X.509 1.x PatchX.509 1.x Patch2000

Openswan 1.xOpenswan 1.xOpenswan 1.xOpenswan 1.x

 2004 2004

2004

strongSwan 2.xstrongSwan 2.xOpenswan 2.xOpenswan 2.x

2004

strongSwan 2.xstrongSwan 2.xOpenswan 2.xOpenswan 2.x

2005

ITA IKEv2 ProjectITA IKEv2 Project
2006

2005

ITA IKEv2 ProjectITA IKEv2 Project
2006

strongSwan 4.xstrongSwan 4.x

2007 IKEv1 & IKEv2

strongSwan 4.xstrongSwan 4.x

2007 IKEv1 & IKEv2

Openswan 3.xOpenswan 3.x

IKEv1 only

Openswan 3.xOpenswan 3.x

IKEv1 only

Internet Key Exchange Version 1 (IKEv1)

In this section we give a very concise overview of version 1 of the Internet Key
Exchange (IKEv1) protocol; i.e. just enough information to be able to highlight
the considerable improvements brought about by the successor protocol IKEv2.

IKEv1 is split into two phases: Phase 1 realized either by IKE Main Mode or IKE
Aggressive Mode sets up an ISAKMP security association (SA), comprising
mutual peer authentication and the generation of keying material for the
secure exchange of IKE messages. Phase 2, implemented by IKE Quick Mode
sets up one or several IPsec SAs that produce the ESP keying material required
to transmit encrypted and authenticated payload packets.

Illustration 3 shows the Phase 1 IKE Main Mode message exchange effecting a
peer authentication based on RSA signatures. IKE uses UDP datagrams with
the well-known source and destination port 500.

● In a preliminary message exchange the initiator sends an ISAKMP SA
proposal containing a list of cryptographic transforms. The responder
selects the first acceptable transform and returns it in the ISAKMP SA
response.

● In a second message exchange each peer sends a public Diffie-Hellman
factor and a nonce which are used to derive encryption and HMAC keys
for all further IKE messages. The nonces protect against replay attacks.

● The third and last exchange of IKE Main Mode is used to confidentially
transmit the peer identities, an RSA-signed hash computed over all
previous messages and optionally a certificate that can be used by the
receiver to verify the RSA signature and with the help of the identity
string to authenticate the peer.

Reprint of LinuxTag2007 Paper 4

Illustration 3: IKEv1 – IKE Main Mode message exchange

IKE
Header
IKE

Header
DH Key

Exchange
DH Key

Exchange Nr
Nr4

3IKE
Header
IKE

Header
DH Key

Exchange
DH Key

Exchange Ni
Ni

IKE
Header
IKE

Header
ISAKMP SA
Proposal

ISAKMP SA
Proposal 1

IKE
Header
IKE

Header
ISAKMP SA
Response

ISAKMP SA
Response2

5IKE
Header
IKE

Header

encrypted

IDi
IDi CertiCerti Sigi

Sigi encrypted

IKE
Header
IKE

Header6 IDr
IDr CertrCertr Sigr

Sigr

ResponderInitiator UDP/500

IKE
Header
IKE

Header
DH Key

Exchange
DH Key

Exchange Nr
Nr4 IKE

Header
IKE

Header
DH Key

Exchange
DH Key

Exchange Nr
Nr4

3IKE
Header
IKE

Header
DH Key

Exchange
DH Key

Exchange Ni
Ni 3IKE

Header
IKE

Header
DH Key

Exchange
DH Key

Exchange Ni
Ni

IKE
Header
IKE

Header
ISAKMP SA
Proposal

ISAKMP SA
Proposal 1IKE

Header
IKE

Header
ISAKMP SA
Proposal

ISAKMP SA
Proposal 1

IKE
Header
IKE

Header
ISAKMP SA
Response

ISAKMP SA
Response2 IKE

Header
IKE

Header
ISAKMP SA
Response

ISAKMP SA
Response2

5IKE
Header
IKE

Header

encrypted

IDi
IDi CertiCerti Sigi

Sigi 5IKE
Header
IKE

Header

encrypted

IDi
IDi CertiCerti Sigi

Sigi encrypted

IKE
Header
IKE

Header6 IDr
IDr CertrCertr Sigr

Sigr

encrypted

IKE
Header
IKE

Header6 IDr
IDr CertrCertr Sigr

Sigr

ResponderInitiator UDP/500 ResponderInitiator UDP/500

● The ensuing Phase 2 IKE Quick Mode uses three additional messages to
exchange the traffic selectors and cryptographic transforms needed for
an IPsec SA. In the topology shown in Illustration 1, the traffic selectors
for the site-to-site VPN would be 10.2.0.0/16 and 10.1.0.0/16, defining
the two subnets that are to be connected by the IPsec tunnel whereas in
the remote access case the traffic selectors would be 10.3.0.2/32 and
10.1.0.0/16, connecting the road warrior with the home network.

Thus the establishment of a single IPsec SA using the IKEv1 protocol requires
the exchange of a total of nine UDP datagrams. This fact alone is already
reason enough to develop an improved second generation protocol!

Internet Key Exchange Version 2 (IKEv2)

IKEv2 as defined by RFC 4306 improves considerably upon its predecessor by
packing the establishment of a single IPsec SA into a mere four UDP
datagrams. These messages are shown in Illustration 4.

IKEv2 employs a strict request/response message exchange scheme with the
response [besides often also carrying information] always having the function
of an acknowledgement. Thus the task of resending messages falls to the
initiator, only. In the case of frequent packet loss or network congestion this
consistent scheme makes IKEv2 much more stable than IKEv1 where often
both sides would start to retransmit messages thought to be lost.

● The IKE_SA_INIT message packs the selection of cryptographic transforms
for the IKE SA (SA1i/SA1r), the derivation of a common Diffie-Hellman
secret (KEi/KEr) and the nonces (Ni/Nr) into a single exchange. Since a
Diffie-Hellman public key operation is computationally expensive, the
responder can request a cookie if a Denial-of-Service attack is suspected.

Reprint of LinuxTag2007 Paper 5

Illustration 4: IKEv2 - IKE_SA_INIT and IKE_AUTH message exchanges

IKE
Header
IKE

Header
1SA1i

SA1i KEi
KEi Ni

Ni

2 IKE
Header
IKE

Header SA1r
SA1r KEr

KEr Nr
Nr

3IKE
Header
IKE

Header

encrypted

IDi
IDi CertiCerti

Authi
Authi

IDr
IDr

SA2i
SA2i TSi

TSi TSr
TSr

4

encrypted

IKE
Header
IKE

Header IDr
IDr CertrCertr Authr

Authr

SA2r
SA2r TSi

TSi TSr
TSr

ResponderInitiator UDP/500

IKE
Header
IKE

Header
1SA1i

SA1i KEi
KEi Ni

Ni
IKE

Header
IKE

Header
1SA1i

SA1i KEi
KEi Ni

Ni

2 IKE
Header
IKE

Header SA1r
SA1r KEr

KEr Nr
Nr2 IKE

Header
IKE

Header SA1r
SA1r KEr

KEr Nr
Nr

3IKE
Header
IKE

Header

encrypted

IDi
IDi CertiCerti

Authi
Authi

IDr
IDr

SA2i
SA2i TSi

TSi TSr
TSr

3IKE
Header
IKE

Header

encrypted

IDi
IDi CertiCerti

Authi
Authi

IDr
IDr

SA2i
SA2i TSi

TSi TSr
TSr

4

encrypted

IKE
Header
IKE

Header IDr
IDr CertrCertr Authr

Authr

SA2r
SA2r TSi

TSi TSr
TSr

4

encrypted

IKE
Header
IKE

Header IDr
IDr CertrCertr Authr

Authr

SA2r
SA2r TSi

TSi TSr
TSr

ResponderInitiator UDP/500 ResponderInitiator UDP/500

● The ensuing IKE_AUTH message exchange not only authenticates the
peers (AUTHi/AUTHr) using pre-shared keys (PSK), RSA signatures, or the
extensible authentication protocol (EAP) but also sets up a first so-called
Child SA by defining traffic selectors (TSi/TSr) and the cryptographic
transforms for the IPsec connection (SA2i/SA2r). As part of the authentica-
tion each peer also sends his identity string (IDi/IDr) and optionally a
certificate (CERTi/CERTr). As a novel feature the initiator may request a
the responder to take on a specific identity (IDr) if the peer is known to
possess several.

● Multiple Child SAs can be set up by executing the CREATE_CHILD_SA
request/response pair shown in Illustration 5 carrying the cryptographic
transforms (SAi/SAr), a pair of fresh nonces (Ni/Nr), an optional Diffie-
Hellman exchange if perfect forward secrecy (PFS) is desired an of course
the additional traffic selectors (Tsi/TSr). The CREATE_CHILD_SA message
exchange is also used for the periodic re-keying of either a Child SA or
the IKE SA by including a corresponding notification payload (N).

● At any time either peer can send an INFORMATIONAL message which is
always acknowledged by a response. As Illustration 6 shows, an INFOR-
MATIONAL request can contain a notify (N), a delete SA (D), or a configu-
ration (CP) payload. Empty INFORMATIONAL exchanges can be used to
implement Dead Peer Detection (DPD).

Reprint of LinuxTag2007 Paper 6

Illustration 5: IKEv2 - CREATE_CHILD SA message exchange

1IKE
Header
IKE

Header

encrypted

NN SAi
SAi Ni

Ni

KEi
KEi TSi

TSi TSr
TSr

2 IKE
Header
IKE

Header

encrypted

SAr
SAr Nr

Nr

KEr
KEr TSi

TSi TSr
TSr

ResponderInitiator UDP/500

1IKE
Header
IKE

Header

encrypted

NN SAi
SAi Ni

Ni

KEi
KEi TSi

TSi TSr
TSr

1IKE
Header
IKE

Header

encrypted

NN SAi
SAi Ni

Ni

KEi
KEi TSi

TSi TSr
TSr

2 IKE
Header
IKE

Header

encrypted

SAr
SAr Nr

Nr

KEr
KEr TSi

TSi TSr
TSr

2 IKE
Header
IKE

Header

encrypted

SAr
SAr Nr

Nr

KEr
KEr TSi

TSi TSr
TSr

ResponderInitiator UDP/500 ResponderInitiator UDP/500

Illustration 6: IKEv2 - INFORMATIONAL message exchange

1IKE
Header
IKE

Header

encrypted

NN DD CPCP

2

ResponderInitiator UDP/500

IKE
Header
IKE

Header

encrypted

NN DD CPCP

1IKE
Header
IKE

Header

encrypted

NN DD CPCP

2

ResponderInitiator UDP/500 ResponderInitiator UDP/500

IKE
Header
IKE

Header

encrypted

NN DD CPCP

User-Mode-Linux based Virtual VPN Testbed

We are now going to present two practical IKEv2 scenarios by running them on
our flexible User-Mode-Linux based virtual VPN testbed shown in Illustration 7.

The clients alice and venus are part of the 10.1.0.0/16 subnet hidden behind
gateway moon whereas client bob belongs to the 10.2.0.0/16 subnet located
behind gateway sun. This particular setup allows the simulation of site-to-site
VPN connections.

The 192.168.0.0/24 network models the insecure Internet comprising the outer
interfaces of the gateways moon and sun as well as the two road warriors carol
and dave, both of which can be used in remote access VPN scenarios. The web
server winnetou functions as a repository for certificate revocation lists (CRLs)
and as a responder for the on-line certificate status protocol (OCSP).

The gateways moon and sun can be configured as NAT routers thus allowing
the simulation of IPsec NAT traversal scenarios. In a single NAT topology the
VPN clients alice and venus sitting behind the NAT router moon set up a tunnel
to the VPN gateway sun in order to reach the subnet 10.2.0.0/16 behind it.

By additionally configuring a port forwarding rule for the UDP destination ports
500 and 4500 on gateway sun, all IKE and UDP-encapsulated ESP traffic is
forwarded to VPN client bob, thus creating a double NAT situation that can still
be handled by the standard NAT traversal capabilities of the IKEv2 protocol.

If both gateways moon and sun act as source NAT routers then the VPN clients
behind them are not reachable under the standard IKE ports any more and the
new peer-to-peer NAT traversal protocol extension described at the end of this
paper must be applied in order to be able to establish an IPsec tunnel.

Reprint of LinuxTag2007 Paper 7

Illustration 7: User-Mode-Linux based virtual VPN testbed

Typical Road Warrior Scenario

Illustration 8 shows a typical road warrior scenario which has the following
special properties:

● A road warrior usually possesses a dynamic IP address assigned by the
current local ISP. Therefore the IP address doesn't carry any information
about the peer at all and should not be used as the peer ID.

● Authentication should preferably be based on RSA signatures verifiable
by means of X.509 certificates. With IKEv1 this was the only way to use
IKE Main Mode with dynamic peer IP addresses. With IKEv2 it has become
possible to use mixed RSA/PSK or RSA/EAP authentication modes, though,
as we will show later on.

● The VPN gateway should assign to each road warrior a distinct virtual IP
address taken from a remote access address pool, to be used as a
source address within the IPsec tunnel. This guarantees that return traffic
from the home network is reliably routed to VPN gateway and then
tunneled back to the road warrior.

● Road warriors are often hidden behind NAT-routers. Thus NAT traversal
for IKE and IPsec traffic is a must. The strongSwan IKEv2 implementation
automatically takes care of NAT discovery, port floating to NAT-T port
4500 and subsequent UDP encapsulation of ESP packets.

IKEv2 Remote Access with X.509 Certificates

Using the VPN testbed shown in Illustration 7 we want to set up an IKEv2 road
warrior scenario consisting of the two remote access clients carol and dave
setting up an IPsec tunnel to VPN gateway moon in order to reach the subnet
10.1.0.0/16 behind it. Illustration 9 depicts the configuration files for carol on
the left hand side and for moon on the right hand side. Since mutual authenti-
cation is to be based on RSA signatures, both ipsec.secrets files contain the
path to an RSA private key file located in the /etc/ipsec.d/private/ directory.
carol's key file is still protected by a 3DES transport pass phrase which can be
appended to the ipsec.secrets filename entry so that the RSA key is automati-
cally decrypted during the strongSwan startup.

Reprint of LinuxTag2007 Paper 8

Illustration 8: VPN road warrior remote access case

Internet
Home

Network IPsec Tunnel

VPN Gateway
11.22.33.44

10.1.0.0/16
Road Warrior

55.66.x.x

Dynamic IP

Virtual IP
10.3.0.2

Let us first take a look at carol's ipsec.conf configuration file. The new IKEv2
protocol is selected by setting

keyexchange=ikev2
the default being keyexchange=ikev1. The next line

left=%defaultroute
makes the current IP address of the road warrior's network interface to the
outer address of the IPsec tunnel. The use of the %defaultroute wild card is
recommended with network address that are dynamically assigned by an ISP
and that change frequently as is often the case with remote access clients.
Dating back to FreeS/WAN left and right can be used interchangeably but it is
good practice to designate the local side by left and the remote side by right.

leftsourceip=%config
will force the road warrior to prompt the VPN gateway for a virtual IP address
that can then be used as a source address inside the IPsec tunnel.

leftcert=carolCert.pem
designates the path to carol's X.509 certificate that is going to be sent to moon
in the CERT payload of the IKE_AUTH message.

leftid=carol@strongswan.org
selects carol's identity that will go into the IDi payload and that must be
certified by a subjectAltName in carol's certificate.

leftfirewall=yes
activates the automatic insertion and deletion of iptables rules that let pass
tunneled traffic.

right=192.168.0.1
is the IP adress of VPN gateway moon.

Reprint of LinuxTag2007 Paper 9

Illustration 9: Configuration files for IKEv2 remote access scenario

#ipsec.conf for roadwarrior carol
conn home

keyexchange=ikev2
left=%defaultroute
leftsourceip=%config
leftcert=carolCert.pem
leftid=carol@strongswan.org
leftfirewall=yes
right=192.168.0.1
rightid=@moon.strongswan.org
rightsubnet=10.1.0.0/16
auto=start

#ipsec.conf for gateway moon
conn %default

keyexchange=ikev2
left=%defaultroute
leftcert=moonCert.pem
leftid=@moon.strongswan.org
leftfirewall=yes
right=%any
auto=add

conn rw-carol
rightid=carol@strongswan.org
rightsourceip=10.3.0.1
leftsubnet=10.1.0.0/24
lefthostaccess=yes

conn rw-dave
rightid=dave@strongswan.org
rightsourceip=10.3.0.2
leftsubnet=10.1.0.20/32

#ipsec.secrets for roadwarrior carol
: RSA carolKey.pem "nH5ZQEWtku0RJEZ6"

#ipsec.secrets for gateway moon
: RSA moonKey.pem

#ipsec.conf for roadwarrior carol
conn home

keyexchange=ikev2
left=%defaultroute
leftsourceip=%config
leftcert=carolCert.pem
leftid=carol@strongswan.org
leftfirewall=yes
right=192.168.0.1
rightid=@moon.strongswan.org
rightsubnet=10.1.0.0/16
auto=start

#ipsec.conf for gateway moon
conn %default

keyexchange=ikev2
left=%defaultroute
leftcert=moonCert.pem
leftid=@moon.strongswan.org
leftfirewall=yes
right=%any
auto=add

conn rw-carol
rightid=carol@strongswan.org
rightsourceip=10.3.0.1
leftsubnet=10.1.0.0/24
lefthostaccess=yes

conn rw-dave
rightid=dave@strongswan.org
rightsourceip=10.3.0.2
leftsubnet=10.1.0.20/32

#ipsec.secrets for roadwarrior carol
: RSA carolKey.pem "nH5ZQEWtku0RJEZ6"

#ipsec.secrets for gateway moon
: RSA moonKey.pem

rightid=@moon.strongswan.org
is the expected identity of VPN gateway moon which will be sent in the IDr
payload.

rightsubnet=10.1.0.0/16
is the subnet behind VPN gateway moon that carol wants to reach. And finally

auto=start
causes the connection home to be started as soon as the keying daemon is up
and running. Illustration 10 is an excerpt from carol's syslog which shows the
IKE_SA_INIT and IKE_AUTH message exchanges defined in Illustration 4.

On the gateway side we first define some default values that will be valid for all
subsequent connection definitions, among them

auto=add and right=%any
which means that moon will wait passively as a responder for the road warriors
to initiate the IKEv2 connection setup originating from an arbitrary IP address.
Next follow the two connection definitions rw-carol and rw-dave with some
host-specific configurations such as

rightsourceip=10.3.0.1
rightsourceip=10.3.0.2

which define the virtual IPs to be assigned to carol and dave, respectively.
Illustration 11 shows the syslog of responder moon which corresponds to
carol's initiator log entries.

Reprint of LinuxTag2007 Paper 10

Illustration 11: VPN gateway moon as responder

05[NET] received packet: from 192.168.0.100[500] to 192.168.0.1[500]
05[ENC] parsed IKE_SA_INIT request [SA No KE N N]
05[ENC] generating IKE_SA_INIT response [SA No KE N N CERTREQ]
05[NET] sending packet: from 192.168.0.1[500] to 192.168.0.100[500]
06[NET] received packet: from 192.168.0.100[500] to 192.168.0.1[500]
06[ENC] parsed IKE_AUTH request [IDi CERTREQ CERT IDr AUTH CP SA TSi TSr]
06[IKE] peer requested virtual IP %any
06[IKE] assigning virtual IP 10.3.0.1 to peer
06[AUD] established CHILD_SA successfully
06[ENC] generating IKE_AUTH response [IDr CERT AUTH CP SA TSi TSr]
06[NET] sending packet: from 192.168.0.1[500] to 192.168.0.100[500]

Illustration 10: Roadwarrior carol as initiator

05[ENC] generating IKE_SA_INIT request [SA No KE N N]
05[NET] sending packet: from 192.168.0.100[500] to 192.168.0.1[500]
06[NET] received packet: from 192.168.0.1[500] to 192.168.0.100[500]
06[ENC] parsed IKE_SA_INIT response [SA No KE N N CERTREQ]
06[ENC] generating IKE_AUTH request [IDi CERTREQ CERT IDr AUTH CP SA TSi TSr]
06[NET] sending packet: from 192.168.0.100[500] to 192.168.0.1[500]
07[NET] received packet: from 192.168.0.1[500] to 192.168.0.100[500]
07[ENC] parsed IKE_AUTH response [IDr CERT AUTH CP SA TSi TSr]
07[IKE] installing new virtual IP 10.3.0.1
07[AUD] established CHILD_SA successfully

IKEv2 Narrowing of Traffic Selectors

A novel feature introduced by the IKEv2 protocol is the automatic narrowing of
traffic selectors as shown in Illustration 9 where carol defines

rightsubnet=10.1.0.0/16
and inserts this desired subnet into the TSr traffic selector payload of the
IKE_AUTH request but moon restricts access to the local subnet to

leftsubnet=10.1.0.0/24
communicating this narrowing via the TSr payload in the IKE_AUTH reply,
causing the Child SA to be installed with the narrower subnet definition as can
easily be seen from the output of carol's ipsec statusall listed in Illustration 12.

The narrowing mechanism is a very convenient feature because the peer does
not have to know a priori to which remote subnet he has access to. Taken to
the extreme, a VPN client could request

rightsubnet=0.0.0.0/0
and the peer would reply with the actual traffic selectors that are available for
the given host or user based on the particular access control rights.

IKEv2 Configuration Payload

Another new feature is the IKEv2 configuration payload (CP) which is closely
modeled after the expired IKE Mode Config Internet draft <draft-dukes-ike-
mode-cfg-02.txt> which is nevertheless being actively used by Cisco Systems
and many other VPN vendors in current IKEv1-based products. Illustration 10
and Illustration 11 both show that carol is sending a CP payload in order to
request a virtual IP address and moon is sending back the pre-assigned address
in a CP reply payload.

How is the virtual IP address actually configured on the VPN client carol? The
output of the Linux system commands ip addr list and ip route list
shown in Illustration 13 gives some insights: The IKEv2 daemon first creates an
alias for the virtual IP address 10.3.0.1 and binds it to the physical IPsec
interface eth0. It then creates a route entry which forces all IP packets destined
for the 10.1.0.0/24 subnet to take on the virtual IP as a source address. Thus all

Reprint of LinuxTag2007 Paper 11

Illustration 12: Narrowing the traffic selectors

carol> ipsec statusall

Connections:
home: 192.168.0.100[carol@strongswan.org]...192.168.0.1[@moon.strongswan.org]
home: dynamic/32 === 10.1.0.0/16

Security Associations:
home[1]: ESTABLISHED, 192.168.0.100[carol@strongswan.org]...

192.168.0.1[@moon.strongswan.org]
home[1]: IKE SPIs: 0x7b7be8689f4338ed_i* 0x48a20dbd8a3ae8eb_r,

reauthentication in 56 minutes
home{1}: INSTALLED, TUNNEL, ESP SPIs: 0xcb89fc54_i 0xc28935c3_o
home{1}: AES_CBC-128/HMAC_SHA1_96, rekeying in 14 minutes, last use: 5s_i 5s_o
home{1}: 10.3.0.1/32 === 10.1.0.0/24

tunneled plaintext packets originate from 10.3.0.1 whereas the encrypted ESP
packets originate from the physical network address 192.168.0.100.

Another special feature can be observed on gateway moon. As Illustration 14
shows, all IP packets destined for carol's virtual IP address 10.3.0.1 and origina-
ting from the gateway itself, automatically assume the source address 10.1.0.1
belonging to the internal eth1 interface and are therefore tunneled to carol
because there is a successful match against the traffic selectors installed by
the Child SA. Without the inserted route, the source address would by default
be equivalent to the IP address 192.168.0.1 of the outer eth0 interface and the
packets would not go through the tunnel but be sent in the clear. This source
address mechanism is automatically activated if one of the network interfaces
on a gateway forms part of a subnet that is being tunneled.

Since it is often not desirable that peers should have access to the VPN gate-
way itself, although the inner gateway interface forms part of the destination
subnet, access must be given explicitly with the statement

lefthostaccess=yes
as is the case for carol in the rw-carol connection definition of Illustration 9.

Full Integration with Linux Netfilter Firewall

With the help of the leftfirewall=yes setting which automatically inserts bi-
directional FORWARD rules on VPN gateways or an INPUT and OUTPUT rule on
single hosts, and the lefthostaccess=yes directive which adds an INPUT and
OUTPUT rule to reach a gateway itself, strongSwan can open a Linux netfilter
based firewall configured with a default DROP or REJECT policy to the tunneled
IPsec traffic according to the negotiated traffic selectors. Illustration 15 shows
the firewall settings on the VPN gateway moon after the two road warriors
carol and dave had set up their tunnels and pinged the hosts alice (10.1.0.10)
and venus (10.1.0.20) successfully.

Reprint of LinuxTag2007 Paper 12

Illustration 13: Virtual IP assigned to carol

carol> ip addr list dev eth0
eth0: inet 192.168.0.100/24 brd 192.168.0.255 scope global eth0

inet 10.3.0.1/32 scope global eth0
carol> ip route list
10.1.0.0/24 dev eth0 proto static src 10.3.0.1

Illustration 14: Using internal interface as source IP

moon> ip addr list
eth0: inet 192.168.0.1/24 brd 192.168.0.255 scope global eth0
eth1: inet 10.1.0.1/16 brd 10.1.255.255 scope global eth1
moon> ip route list
10.3.0.1 dev eth0 proto static src 10.1.0.1

netfilter's IPsec policy matching capability developed by Patrick McHardy is
used to make sure that only traffic coming out of an IPsec tunnel or going into a
tunnel can qualify for an inserted iptables rule. Each rule is bound to a tunnel
through its reqid (the number listed for each security association by ipsec
status). The INPUT and OUTPUT rules for the IKE port and the ESP protocols
must be configured statically.

Online Certificate Status Protocol (OCSP)

When working with X.509 certificates it is of utmost importance to be able to
revoke compromised certificates in a timely fashion. This can be done either by
frequently publishing a certificate revocation list (CRL) or by running one or
several OCSP servers. Information on available CRL distribution points or URIs
of OCSP servers can be gathered either from special extensions contained in
X.509v3 client and host certificates or the URIs can be manually configured in
ipsec.conf with the help of a special ca section. The command ipsec listcainfos
is used to get an overview on the currently available information. A typical
output containing one CRL and one OCSP URI is shown below:

Reprint of LinuxTag2007 Paper 13

Illustration 15: Full integration with Linux netfilter firewall

Chain INPUT (policy DROP 0 packets, 0 bytes)
pkts bytes target prot in out source destination
0 0 ACCEPT all eth0 * 10.3.0.1 10.1.0.0/24

policy match dir in pol ipsec reqid 1 proto 50
2 304 ACCEPT esp eth0 * 0.0.0.0/0 0.0.0.0/0
4 4720 ACCEPT udp eth0 * 0.0.0.0/0 0.0.0.0/0 udp spt:500 dpt:500

Chain FORWARD (policy DROP 0 packets, 0 bytes)
pkts bytes target prot in out source destination
1 84 ACCEPT all eth0 * 10.3.0.2 10.1.0.20

policy match dir in pol ipsec reqid 2 proto 50
1 84 ACCEPT all * eth0 10.1.0.20 10.3.0.2

policy match dir out pol ipsec reqid 2 proto 50
1 84 ACCEPT all eth0 * 10.3.0.1 10.1.0.0/24

policy match dir in pol ipsec reqid 1 proto 50
1 84 ACCEPT all * eth0 10.1.0.0/24 10.3.0.1

policy match dir out pol ipsec reqid 1 proto 50
Chain OUTPUT (policy DROP 0 packets, 0 bytes)
pkts bytes target prot in out source destination
0 0 ACCEPT all * eth0 10.1.0.0/24 10.3.0.1

policy match dir out pol ipsec reqid 1 proto 50
2 304 ACCEPT esp * eth0 0.0.0.0/0 0.0.0.0/0
4 4026 ACCEPT udp * eth0 0.0.0.0/0 0.0.0.0/0 udp spt:500 dpt:500

Illustration 16: List of CRL and OCSP URIs

moon> ipsec listcainfos
Apr 15 14:58:27 2007

authname: 'C=CH, O=Linux strongSwan, CN=strongSwan Root CA'
authkey: 5d:a7:dd:70:06:51:32:7e:e7:b6:6d:b3:b5:e5:e0:60:ea:2e:4d:ef
crluris: 'http://crl.strongswan.org/strongswan.crl'
ocspuris: 'http://ocsp.strongswan.org:8880'

Illustration 17 depicts a typical OCSP message flow where the Kool CA is
delegating the OCSP service to the http server ocsp by issuing a certificate
containing an OCSPSigning extended key usage flag to the server. If gateway
moon is receiving a user certificate signed by the Kool CA from road warrior
carol and the current certificate status is not known then moon will send an
OCSP request containing the name of the certification authority and the serial
number of carol's certificate to the OCSP server and will receive a signed reply
containing one of the possible status values: good, revoked, or unknown as can
be seen from the syslog shown in Illustration 18

Reprint of LinuxTag2007 Paper 14

Illustration 18: Log entry showing http-based OCSP fetching

05[LIB] ocsp status is not in cache
05[LIB] sending http post request to 'http://ocsp.strongswan.org:8880'...
05[LIB] received valid http response
05[LIB] received ocsp signer certificate is trusted
05[CFG] certificate is good

Illustration 19: Cached OCSP reply

moon> ipsec listocsp
authname: 'C=CH, O=Linux strongSwan, CN=strongSwan Root CA'
authkey: 5d:a7:dd:70:06:51:32:7e:e7:b6:6d:b3:b5:e5:e0:60:ea:2e:4d:ef

Apr 15 14:58:30 2007, until Apr 15 15:03:30 2007, ok (expires in 4 minutes)
serial: 13, good

Illustration 17: Online Certificate Status Protocol (OCSP)

carol moon

Kool CA

Kool CA

#0
OCSP Server

OCSP

Kool CA

moon

OCSP Request:
status of Kool CA #2 ?
optionally signed by moon

moon

Kool CA

#3

frequent status updates e.g. via CRL

carol
carol

Kool CA

#2

Authentication

OCSP Reply:
Kool CA #2 good

signed by OCSP Server

OCSP

Kool CA

#1is
OCSP

carol moon

Kool CA

Kool CA

#0Kool CA

Kool CA

#0
OCSP Server

OCSPOCSP

Kool CAKool CA

moonmoon

OCSP Request:
status of Kool CA #2 ?
optionally signed by moon

moon

Kool CA

#3

OCSP Request:
status of Kool CA #2 ?
optionally signed by moon

moon

Kool CA

#3moon

Kool CA

#3

frequent status updates e.g. via CRLfrequent status updates e.g. via CRL

carolcarol
carol

Kool CA

#2

Authentication

carol

Kool CA

#2carol

Kool CA

#2

Authentication

OCSP Reply:
Kool CA #2 good

signed by OCSP Server

OCSP

Kool CA

#1is
OCSP

OCSP Reply:
Kool CA #2 good

signed by OCSP Server

OCSP

Kool CA

#1OCSP

Kool CA

#1is
OCSP

IKEv2 Mixed PSK/RSA Authentication

The IKEv2 protocol allows mixed authentication modes where a VPN gateway
possesses an X.509 certificate plus a matching private RSA key doing digital
signatures whereas the VPN clients use personalized pre-shared keys. A
corresponding configuration is shown in Illustration 20.

The authby parameter defines the type of authentication the local peer is going
to use for himself. Thus the road warrior carol has

authby=psk
and stores a pre-shared key in ipsec.secrets which is also known by moon.
moon itself possesses a private RSA key and therefore uses the default
authentication mode

authby=rsasig

IKEv2 EAP Authentication

A SIM card (GSM/GPRS) or a USIM card (UMTS/CDMA2000) is the classical user
credential in a mobile communications environment. But increasingly
unlicensed public and private WLANs are mushrooming and the straightforward
solution for safeguarding the authentication process and subsequent Internet
access is to use an IPsec tunnel established by the IKEv2 protocol in
combination with a mixed EAP/RSA authentication process. Actually there is a
3GPP standard mandating this procedure, with the consequence that the
majority of todays IKEv2 applications are in the mobile communications area.
Illustration 21 shows the typical situation where a mobile station (MS) sets up
an IPsec tunnel to a security gateway (SEGW) co-located with the generic
access network controller (GANC).

Reprint of LinuxTag2007 Paper 15

Illustration 20: IKEv2 Mixed PSK/RSA Authentication

#ipsec.conf for roadwarrior carol
conn home

keyexchange=ikev2
authby=psk
left=%defaultroute
leftid=carol@strongswan.org
leftfirewall=yes
right=192.168.0.1
rightid=@moon.strongswan.org
rightsubnet=10.1.0.0/16
auto=start

#ipsec.conf for gateway moon
conn rw

keyexchange=ikev2
authby=rsasig
left=%defaultroute
leftsubnet=10.1.0.0/16
leftcert=moonCert.pem
leftid=@moon.strongswan.org
leftfirewall=yes
right=%any
auto=add

#ipsec.secrets for roadwarrior carol
carol@strongswan.org : \

PSK "FpZAZqEN6Ti9sqt4ZP5EWcqx"

#ipsec.secrets for gateway moon
: RSA moonKey.pem
carol@strongswan.org : \

PSK "FpZAZqEN6Ti9sqt4ZP5EWcqx"
dave@strongswan.org : \

PSK "jVzONCF02ncsgiSlmIXeqhGN"

#ipsec.conf for roadwarrior carol
conn home

keyexchange=ikev2
authby=psk
left=%defaultroute
leftid=carol@strongswan.org
leftfirewall=yes
right=192.168.0.1
rightid=@moon.strongswan.org
rightsubnet=10.1.0.0/16
auto=start

#ipsec.conf for gateway moon
conn rw

keyexchange=ikev2
authby=rsasig
left=%defaultroute
leftsubnet=10.1.0.0/16
leftcert=moonCert.pem
leftid=@moon.strongswan.org
leftfirewall=yes
right=%any
auto=add

#ipsec.secrets for roadwarrior carol
carol@strongswan.org : \

PSK "FpZAZqEN6Ti9sqt4ZP5EWcqx"

#ipsec.secrets for gateway moon
: RSA moonKey.pem
carol@strongswan.org : \

PSK "FpZAZqEN6Ti9sqt4ZP5EWcqx"
dave@strongswan.org : \

PSK "jVzONCF02ncsgiSlmIXeqhGN"

The strongSwan project team recently developed both an EAP-SIM and EAP-AKA
authentication module for two major mobile communications equipment manu-
facturers.

IKEv2 Interoperability

The strongSwan team (Martin Willi and Andreas Steffen) participated in the
third IKEv2 interoperability test organized by ICSAlabs which took place from
March 5-9 2007 in Orlando, Florida. The strongSwan software successfully
interoperated with IKEv2 products from

Alcatel-Lucent, Certicom, CheckPoint, Cisco, Furukawa, Ixia, Juniper, Nokia,
SafeNet, Secure Computing, and SonicWall.

Illustration 22 conveys some impressions from the event, showing Martin Willi
in full action testing our code. Our conclusion from the bake-off was that
strongSwan can compete quite well with commercial implementations.

Another interesting questions concerns the availability and maturity of Open
Source IKEv2 software implementations. Currently there are four of them:

● OpenIKEv2 - http://openikev2.sourceforge.net/

● Racoon2 - http://www.racoon2.wide.ad.jp/

● IKEv2 - http://ikev2.zemris.fer.hr/

● strongSwan - http://www.strongswan.org/

The developers of the OpenIKEv2 project have compiled an IKEv2 feature
comparison list which is shown in Illustration 23.

Reprint of LinuxTag2007 Paper 16

Illustration 21: IKEv2 EAP-SIM or EAP-AKA authentication in mobile applications

The Racoon2 and IKEv2 projects were the first to publish usable code but their
activity has been rather low to non-existant for more than a year now. Current-
ly the most active projects are OpenIKEv2 and strongSwan. OpenIKE2 initially
had a big head start at the beginning of 2006 but strongSwan gained rapidly
over the last year so that today the two projects are about even in respect to
the number of implemented features. It is worth mentioning that strongSwan is
the only Open Source solution that offers NAT traversal, an absolute must for
remote access solutions.

Reprint of LinuxTag2007 Paper 17

Illustration 22: IKEv2 Interoperability Workshop in Orlando, Florida

Illustration 23: IKEv2 Open Source Software Feature Comparison

Yes (not RFC4478)NoNoYesRepeated Authentication (RFC4478)

YesYesYesYesDifferent configuration per peer

YesNoYesYesIPv6 support

YesNoYesYesPerfect Forward Secrecy for CHILD_SAs

XFRMPFKEYv2PFKEYv2XFRM / PFKEYv2IPSec Interface

YesYesYesYesTransport Mode IPSec

YesYesYesYesTunnel Mode IPSec

YesNoNoYesEAP Support

YesNoNoNoNAT Traversal

YesNoNoYesConfiguration Payload (Dynamic Addressing)

YesYesYesYesIKE SA Deletion

YesYesYesYesChild SA Deletion

YesSoftSoftSoftIKE SA Rekeying

YesSoftSoftSoftChild SA Rekeying

YesNoNoYesCertificate Authentication

YesYesYesYesPreshared-Key Authentication

YesNoNoYesNarrowing

YesYesYesYesTraffic selector negotiation

YesYesYesYesProposal negotiation

YesYesYesYesDH group negotiation

YesYesYesYesCookies

4.1.21.002/11/20050.93Version

strongSwanikev2racoon2openikev2Features

Yes (not RFC4478)NoNoYesRepeated Authentication (RFC4478)

YesYesYesYesDifferent configuration per peer

YesNoYesYesIPv6 support

YesNoYesYesPerfect Forward Secrecy for CHILD_SAs

XFRMPFKEYv2PFKEYv2XFRM / PFKEYv2IPSec Interface

YesYesYesYesTransport Mode IPSec

YesYesYesYesTunnel Mode IPSec

YesNoNoYesEAP Support

YesNoNoNoNAT Traversal

YesNoNoYesConfiguration Payload (Dynamic Addressing)

YesYesYesYesIKE SA Deletion

YesYesYesYesChild SA Deletion

YesSoftSoftSoftIKE SA Rekeying

YesSoftSoftSoftChild SA Rekeying

YesNoNoYesCertificate Authentication

YesYesYesYesPreshared-Key Authentication

YesNoNoYesNarrowing

YesYesYesYesTraffic selector negotiation

YesYesYesYesProposal negotiation

YesYesYesYesDH group negotiation

YesYesYesYesCookies

4.1.21.002/11/20050.93Version

strongSwanikev2racoon2openikev2Features

Peer-to-Peer NAT-Traversal for IPsec

The two HSR graduates Tobias Brunner and Daniel Röthlisberger developed a
peer-to-peer NAT traversal scheme for IPsec as part of their diploma thesis.
Tobias Brunner then took on the work to write an Internet draft that is now
nearly ready to get published. In a preview we would like to outline the
proposed peer-to-peer NAT traversal extension of the IKEv2 protocol.

The problem of setting up a UDP connection between two peers hidden behind
two NAT routers is well known from the field of IP telephony where STUN and
ICE are used to discover and exchange endpoints and concerted hole punching
is employed to surmount stateful inspection firewalls.

In a VoIP environment UDP endpoint discovery is usually achieved by means of
a STUN server located in the Internet that is reachable by both peers. We plan
to use a mediation server using IKEv2 instead, as shown in Illustration 24.

The two hosts alice and bob with IP addresses 10.1.0.10 and 10.2.0.10 are
sitting behind two NAT routers with external IP addresses 1.2.3.4 and 5.6.7.8,
respectively. The peers want to set up a direct IPsec tunnel using the
established NAT traversal mechanism of encapsulating ESP packets in UDP
datagrams. Unfortunately they cannot achieve this by themselves because
neither host is seen from the Internet under the IKE NAT-T port 4500.

Therefore both peers set up a mediation connection with a mediation server,
first. For the mediation connections randomized pseudonyms can be used as
IKE peer identities in order to prevent unwanted connection attempts by
foreign peers. In our example alice sets up an IKE SA with the mediation server
using her pseudonym aZch2@m.org. As part of our proposed IKEv2 protocol
extension no Child SA is created but aZch2@m.org can register a request with
the mediation server to be alerted when peer 7vnU3b@m.org comes on-line.

Reprint of LinuxTag2007 Paper 18

Illustration 24: Peer-to-peer NAT-traversal for IPsec

Mediated Connection

IKEv2

NAT Router
5.6.7.8:3001

Direct ESP Tunnel
using NAT-Traversal

10.1.0.10 10.2.0.10

10.1.0.10:4500 10.2.0.10:4500

NAT Router
1.2.3.4:1025

IKEv2

Mediation
Connection

IKEv2

Mediation
Connection

Peer Alice Peer Bob

aZ9ch2@m.org

7vnU3b@m.org

Mediation Server

Mediation
Client

Mediation
Client

Mediated Connection

IKEv2

Mediated Connection

IKEv2

NAT Router
5.6.7.8:3001

Direct ESP Tunnel
using NAT-Traversal

10.1.0.10 10.2.0.10Direct ESP Tunnel
using NAT-Traversal

10.1.0.10 10.2.0.10

10.1.0.10:4500 10.2.0.10:4500

NAT Router
1.2.3.4:1025

IKEv2

Mediation
Connection

IKEv2

Mediation
Connection

IKEv2

Mediation
Connection

IKEv2

Mediation
Connection

Peer Alice Peer Bob

aZ9ch2@m.org

7vnU3b@m.org

Mediation Server

Mediation
Client

Mediation
Client

Mediation Server

Mediation
Client

Mediation
Client

With the help of a new IKEv2 endpoint payload the mediation server tells alice
under which UDP endpoint she is seen from the Internet (1.2.3.4:1025). When
bob sets up his mediation connection in turn, he learns his current endpoint
(5.6.7.8:3001) as well.

The mediation server now informs aZch2@m.org of 7vnU3b@m.org's presence
and mediates the mutual exchange of endpoints. alice and bob then try to set
up a direct IKEv2 connection using their true identities by applying the various
hole punching methods described by ICE. The peers might even discover that
they are located behind the same NAT router so that no NAT traversal is
necessary at all.

Conclusion

We hope to have succeeded in our goal of convincing you of the advantages of
the new IKEv2 key exchange protocol and to show that strongSwan is offering a
mature and nearly complete Open Source implementation of this emerging
standard.

Bibliography

● IETF RFC 4303 „IP Encapsulating Security Payload”, 2005

● IETF RFC 4306 „Internet Key Exchange (IKEv2) Protocol“, 2005

● IETF RFC 3489 „STUN - Simple Traversal of UDP Through NATs“, 2003

● IETF Draft <draft-ietf-mmusic-ice-15.txt> „ICE - Interactive Connectivity
Establishment“, 2007

Reprint of LinuxTag2007 Paper 19

	VPNs revisited
	The FreeS/WAN Genealogy
	Internet Key Exchange Version 1 (IKEv1)
	Internet Key Exchange Version 2 (IKEv2)
	User-Mode-Linux based Virtual VPN Testbed
	Typical Road Warrior Scenario
	IKEv2 Remote Access with X.509 Certificates
	IKEv2 Narrowing of Traffic Selectors
	IKEv2 Configuration Payload
	Full Integration with Linux Netfilter Firewall
	Online Certificate Status Protocol (OCSP)
	IKEv2 Mixed PSK/RSA Authentication
	IKEv2 EAP Authentication
	IKEv2 Interoperability
	Peer-to-Peer NAT-Traversal for IPsec
	Conclusion
	Bibliography

